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Abstract

The paper presents the finite element (FE) modeling of operation of a rotational motion sensor that uses a balanced
oscillator (tuning fork) to sense the angular rate. The 3D FE model has been employed for the investigation of the dynamic
properties of the sensor. The sensitivity functions have been obtained for adjusting the geometric parameters of the quartz
element in order to achieve the desired values of natural frequencies. The performance of dynamic computations has been
improved by truncating the dynamic contributions of higher modes of the vibrating structure.

Results are presented in terms of performance characteristics of the sensor against the design parameters in various
modes of operation.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

MEMS1-based measurement units on a single chip
offer major advantages in terms of size, weight and
cost over conventional systems. It is envisioned that
MEMS is an enabling technology that may poten-
tially offer improved systems’ performance as well
as extended functionalities and enhanced lifetime.

Some specific vehicle applications of the MEMS
motion detection devices encounter unique chal-
lenges due to both the demanding operational and
environmental standards and requirements for
stringent reliability and performance degradation.
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1 MEMS – micro-electro-mechanical systems.
MEMS technology has the potential to mitigate
challenges posed by future developments of Inertial
Measurement Units. They include miniaturisation,
reduced cost of fabrication and real-time control.

Methods of development and analysis of such
systems require special knowledge and approaches
to mathematical modelling of the behaviour of sys-
tems and to the evaluation of their properties. The
finite element method applied to piezoelectric trans-
ducers provides highly adequate dynamic models.
The models describe the fundamental principles
underlying the measurement systems, as well as,
provide the means of treatment of deviations and
uncertainties based on the analysis of instrument’s
structure and the effects of sensitivity to parameters
variations and external influences.

Systematic approaches to mathematical model-
ling of sensors are extensively discussed in [1].
.
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Fig. 1. Balanced tuning fork-shaped quartz resonator of the
sensor.
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The application of the FE method for modal
analysis of piezoelectric resonators is described in
[2]. The variational formulation of the problem is
based on the physical description of the behaviour
of piezoelectric structures. The governing equations
of the piezoelectric continua are based on Newton’s
laws of motion and the quasi-static approximation
of Maxwell’s equation.

The piezoelectric angular rate sensors employ the
phenomenon of the Coriolis acceleration. In the
sensor under consideration an oscillatory motion
of the vibrating structure is coupled from the pri-
mary vibrating mode into the secondary mode as
the sensor experiences the angular motion.

In [3] the FE analysis has been used for modelling
the angular rate sensor built on the base of the shell
resonator technology. In particular, the sensitivity
of the sensor to external vibration inputs has been
studied.

A micro-machined angular rate sensor with two
rotary vibration modes has been described in [4].
The mechanical sensor element consists of comb-
shaped drives, which build the spokes of the inner
wheel, and of the outer rectangular structure which
is called the secondary oscillator. Finite element
simulation has been applied to both the analysis
of the shock resistance of the mechanical system
and for modelling of the rotary vibration modes
of the structure.

The use of a simple mechanical coupling model
and FE analysis in order to optimise the design of
the sensor and to reduce the offset output of the
H-shape resonator is presented in [5]. The results
of the analysis demonstrated a strong correlation
between the geometric shape of the vibrator and
the ratio between the differing excitation and detec-
tion frequencies.

In this work we provide the analysis and
design tools for MEMS devices performance eval-
uation by using the micro-gyro as an example.
We introduce a 3D finite element computational
model and software tools allowing to investigate
the dynamic properties of the balanced oscillator
as a constituent part of the angular rate sensor
and to appreciate its parametric sensitivity. A lin-
ear piezoelectric vibration finite element model
has been extended in order to take into account
the rigid body rotation of the transducer and to
present the coupling effect between in-plane and
out-of plane modes caused by Coriolis forces.
The comparative modelling results are being
reported.
2. Basic principles

There are many practical implementations of the
angular rate sensors the principle of operation of
which is based on the high-frequency structural
vibrations. They can be embodied as simple oscilla-
tors, balanced oscillators or shell resonators [3]. In
the GyroChip sensor family balanced oscillators
are employed in order to detect and measure the
angular rate. The physical principles of the opera-
tion and performance specifications of the sensor
are presented in [6,7] as well as on the web site
http://www.systron.com.

The sensor has found wide applications in
the automotive, aerospace, defence, industrial,
commercial, and medical industries. It consists of a
micro-miniature quartz transducer shaped as a dou-
ble-ended tuning fork and of the supporting struc-
ture. Both are fabricated chemically from a single
wafer of the mono-crystalline piezoelectric quartz,
Fig. 1. Due to a single-crystal implementation, the
quartz is stable under temperature changes during
very long operation time and mechanical impacts.

As the reference frame rotates about the sensor’s
longitudinal axis Oz, the tines vibrating in xOz

plane experience simultaneously the Coriolis accel-
eration directed along axis Oy that is directly pro-
portional to the angular rate of rotation of the
reference frame.

The drive tines constitute the active part of the
sensor. They are driven to vibrate at precisely pre-
scribed amplitude. Each tine will experience the
Coriolis force acting on it as:

http://www.systron.com
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F ¼ 2 � m � X � V r; ð1Þ
where m – mass of the tine, Vr – instantaneous ra-
dial velocity, X – the input angular rate.

The Coriolis force is perpendicular to both the
input rate and the instantaneous radial velocity.
As the two drive tines move in the opposite direc-
tions, the resultant forces acting on them are
perpendicular to the plane of the fork and of oppo-
site directions. As a result, a torque proportional to
the input rotational rate is produced.

The pickup tines serve as a sensing part of the
sensor. They are responding to the oscillating tor-
que by performing the out-of-plane vibration and
produce the output signal proportional to the angu-
lar rate.
3. Lumped-parameters model

The simplest lumped-parameters model of the
angular rate sensor is presented in Fig. 2 [8,9]. It
contains a mass able to vibrate along Ox and Oy

directions independently. The system is mounted
inside of a rotating frame, the angular rate of which
is being measured. The coupling between the vibra-
tions in the two directions takes place because of the
Coriolis acceleration that is directed along Oy as a
consequence of the rotation of the frame about Oz

and the linear motion of the mass along Ox.
The dynamic equation of the system in Fig. 2 can

be presented as
Fig. 2. Lumped-mass model of the angular velocity sensor.
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where xðtÞ; yðtÞ; _x; _y;€x; €y – displacements, velocities
and accelerations of the mass in Ox and Oy direc-
tions, #x, #y – damping ratios of vibrations, xx,
xy – natural frequencies of vibrations along Ox

and Oy, f̂ – excitation force amplitude along Ox,
x – excitation frequency, X – angular velocity of
the frame. The skew-symmetric terms X and �X ap-
pear in the gyroscopic part of the matrix and take
into account the Coriolis forces. Here we neglect
the spin-softening effects caused by the centripetal
inertia force as oscillation amplitudes of the vibrat-
ing mass are very small.

The solution of system (2) is obtained in terms of
amplitudes of harmonic vibrations. The main
dynamic properties of the system are presented by
the relationships in Figs. 3 and 4.

Fig. 3 presents the vibration amplitude against the
excitation frequency relationships (AFCH) for differ-
ent values of the ratio of natural frequencies xy/xx.
By choosing the appropriate value of xy/xx, a pla-
teau on the AFCH of Oy vibrations can be obtained.
In this way, nearly constant values of the vibration
amplitudes are ensured in a rather wide excitation
frequency range in the vicinity of the resonance.

Fig. 4 presents the relationship of the response
amplitudes along Oy and phases of vibration
against the angular rate of the rotation of the refer-
ence frame for the example system having the
damping ratio 0.02 and the natural frequency ratio
xy/xx = 1.03.

In the range of angular rates �0.01xx < X <
0.01xx nearly linear relationships can be observed.
The reverse of the direction of the angular rate leads
to the immediate reverse of the sign of the phase of
Oy vibrations.

4. Finite element model

The tuning fork is a vibrating piezoelectric plate
of the complex geometric shape the side surfaces
of which are laminated by electrodes enabling to
create an electric field inside of the material. The dif-
ferential equations governing the behaviour of the
piezoelectric continuum are the Newton’s laws of
motion and the quasi-static approximation of the
Maxwell’s equation.



Fig. 3. Amplitude frequency characteristics of the lumped mass model at different values of the natural frequency ratio xy/xx.

Fig. 4. Response amplitudes and phases of the lumped mass model against the angular velocity of the rotation of the frame at xy/
xx = 1.03; #x = #y = 0.02.
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Elastic vibrations of a body are described by
means of the differential equations in its volume V

and boundary conditions on its surface S as

½A�Tfrg þ fbg ¼ qf€ug; 2 V

ftg ¼ ½As�Tfrg; 2 S
ð3Þ

where {r} – stress tensor in Voigt’s notation, {b} –
body force vector, {t} – tractions vector on surface
S, {u} – displacement vector of any point of the
body, q – density of the material, [A] – differential
operator, [As] – matrix containing components of
unit normal vector {n} to surface S. In the 2D case
we have

½A� ¼

o
ox 0

0 o
oy

o
oy

o
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2
64

3
75; ½As� ¼

nx 0

0 ny

ny nx

2
64

3
75:

The constitutive equation of piezoelectricity
relating stresses, strains, electric field and electric
displacement components reads as
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frg ¼ ½cE�feg � ½e�fEg;
fDg ¼ ½e�Tfeg � ½j�fEg;

�
ð4Þ

where {E} – electric field vector, {D} – dielectric dis-
placement vector, [cE] – stiffness tensor at constant
electric field value, [e] – piezoelectric tensor, [j] –
dielectric tensor. In many practical situations the
electric field created in the material may be consid-
ered as known. In this case the piezoelectric phe-
nomena in the plate are governed by the single
linear piezoelectricity equation as

frg ¼ ½cE�feg � ½e�fEg: ð5Þ
As relative displacements of the tuning fork with

respect to the rotating reference frame are being
considered, the full acceleration {aF} = {a} +
{aN} + {aT} + {aC} should be used in the virtual
work equation of the finite element asZ

V
dfegTfrgdV þ

Z
V

qdfugTfaFgdV ¼ dfUgTfRg;

ð6Þ

where symbol d denotes the virtual quantity, {u} =
[N]{U} – the displacement vector of a particle inside
the finite element expressed in terms of the form
function matrix [N] and the nodal displacement vec-
tor {U}, q – density of the material, {R} – vector of
nodal interaction forces, {a} – relative acceleration
with respect to the rotating frame; {aN}, {aT} – nor-
mal and tangential accelerations due to the rotation
of the frame; {aC} – Coriolis acceleration.

The structural dynamic equation of the finite ele-
ment of the H shape vibrator is obtained as [8,9]:

½M�f€Ug þ 2X½G�f _Ug þ ð½K� � X2½K1� þ e½G�ÞfUg
¼ fRg þ fFg þ X2½K1�fXg � e½G�fXg; ð7Þ

where ½G� ¼
R

V q½N�T
0 �1 0
1 0 0
0 0 0

2
4

3
5½N�dV – gyro-

scopic matrix, ½K1� ¼
R

V q½N�T
1 0 0
0 1 0
0 0 0

2
4

3
5½N�dV –

centripetal force matrix, ½M� ¼
R

V q½N�T½N�dV ,
½K� ¼

R
V ½B�

T½cE�½B�dV – correspondingly mass and
stiffness matrices, fFg ¼

R
V ½B�

T½e�fEgdV – nodal
excitation forces due to the inverse piezoelectric ef-
fect, {X} – vector of nodal coordinates of the finite
element, X and e correspondingly are the angular
rate and angular acceleration of the reference frame
rotation about Oz axis.
The energy dissipation in piezoelectric transduc-
ers may be caused by mechanical, piezoelectric and
electrical phenomena taking place during the vibra-
tion. The true mechanism of the energy dissipation
is very complex. However, as the first approximation
it may be reasonably assumed that the damping phe-
nomena are caused mainly by the hysteresis loop in
the relation r(e) presented by Eq. (5). In harmonic
vibration analysis the hysteresis phenomena are gen-
erally described by introducing complex values of
stiffness coefficients as ½cE� ¼ ½�cE�ð1þ jgMÞ where
gM is referred to as the mechanical dissipation fac-
tor. The physical meaning of gM is the tangent of
the phase shift angle between the stress and the strain
caused by the hysteresis phenomena during the har-
monic vibration of the piezoelectric transducer.

By employing the complex value of [cE] we
assume that the dynamic analysis is carried out in
the frequency domain and consequently the stiffness
matrix of the transducer is presented in the complex
form as [K](1 + jgM). Mathematically the same
effect is obtained by introducing the damping term
½C�f _Ug into Eq. (7), where [C] = gM[K] is referred
to as the proportional damping matrix. A general
form of the proportional damping matrix is pre-
sented as [Ce] = a[Me] + b[Ke], where coefficients a,
b may be easily determined if two values of the
dynamic amplification factor of the vibrations cor-
responding to two different vibration frequencies
are known. Such simplified dissipation models can
be used in practical computations only if damping
forces are small. Small damping is an inherent fea-
ture of resonant piezoelectric vibrating systems con-
sidered in this study. Their dynamic amplification
factor may reach values 50–1000.

The finite element model has been implemented
and modal analysis has been performed in ANSYS
finite element software by using shell elements
SHELL43 and material parameters corresponding
to stiffness tensor [cE]. The finite element mesh can
be seen in Fig. 5. The modal errors caused by the
discretization have been estimated by comparing
the modal results obtained by considering models
of different mesh refinements. It has been demon-
strated that the mesh presented in Fig. 5 provides
satisfactory results in the range of modal frequen-
cies necessary for analyses performed in this study.

By the use of finite element analysis both the
operation specifics of the sensor and the quantita-
tive evaluation of the relationship of the output sig-
nal against the angular rate of the outer frame have
been carried out.



Fig. 5. (a,b) The 3 and 4 mode shapes of the vibrating structure. (c,d) The 8 and 9 mode shapes of the vibrating structure.
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By using the finite element model of the tuning
fork-shaped quartz transducer we calculate a finite
number of modes of a non-rotating transducer.
They are obtained by solving the characteristic
equation as

ð½K� � x2½M�ÞfUg ¼ 0: ð8Þ
A typical set of geometrical values of the trans-

ducer gives the modal frequencies the lower range
of which are presented in Table 1.

The fundamental vibration modes of interest are
the 3rd, 4th, 8th and the 9th. They play the key role
in the resonant dynamic behavior of the angular
rate sensor and provide the in-plane and out-of-
plane vibration coupling of the transducer rotating
about the Oz axis. The shapes of the modes are pre-
sented in Fig. 5.
The 3rd and 4th modes situated closely in the fre-
quency range exist only if the ends of the horizontal
bar (see Fig. 1) are constrained rigidly.

5. Parametric sensitivity

The tuning fork-shaped transducer is a mechani-
cal vibrating system with high value of the dynamic
amplification factor. Its performance and dynamic
features depend substantially upon modal frequen-
cies and shapes of vibration. The influence of the
design parameters upon the modal properties of
the transducer has been investigated by employing
the sensitivity functions.

A sensitivity function denotes the sensitivity of
the output values of the system to the variations
of the system’s design parameters. As the design



Table 1
Lower range of modal frequencies of the fork

Mode number Natural frequency (Hz) Basic feature of the natural form

1 3529 Out-of-plane, torsion of the supporting bar about Ox

2 4048 Out-of-plane, I bending mode symmetrical to Ox

3 8110 Out-of-plane, bending of fork legs, symmetrical to Ox and anti-symmetrical to Oz

4 8113 Out-of-plane, bending of fork legs, anti-symmetrical to Ox and Oz

5 11,215 In-plane, torsion of the center of the cross about Oy

6 12,052 In-plane, bending of the neck symmetrical to Ox

7 25,085 Out-of-plane, II bending mode along Oz

8 25,398 In-plane, bending of the legs symmetrical to Oz and anti-symmetrical Ox

9 25,400 In-plane, bending of the legs anti-symmetrical to Oz and symmetrical to Ox

10 27,183 Out-of-plane, III bending mode along Oz
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parameters in this study we analyze the geo-
metric values presented in Fig. 6. The finite ele-
ment matrices of the transducer can be presented
as functions [K(bi)], [M(bi)] of design parameters
bi of the vibrating structure [9]. The relations
between small variations of the design parameters
and corresponding variations of modal frequencies
are obtained by using the characteristic Eq. (8).
The first variation of (8) gives the following rela-
tions, [9]:
offig ¼ ½Ci�ofbg; ð9Þ

where ½Ci� ¼ fyig
T o½K�

ofbg � fi
o½M�
ofbg

� �
fyig is the matrix of

sensitivity coefficients, fi ¼ x2
i – square of the ith

modal frequency, {yi} – the vector describing the
ith modal shape.

The first variation of (8) gives the following
relations:
Fig. 6. Geometric paramet
o½K�
ofbg � fi

o½M�
ofbg

� 	
fyigofbg þ ð½K� � fi½M�Þofyig

� ofi½M �fyig ¼ 0;

2fyig
T½K�fyig þ fyig

T o½K�
ofbg fyigofbg � ofi ¼ 0;

2fyig
T½M�fyig þ fyig

T o½M�
ofbg fyigofbg ¼ 0: ð10Þ

By taking into account the inherent properties of
modal shapes of a structure as

fyig
T½K�fyig ¼ ½diagðfiÞ�; fyig

T½M�fyig ¼ ½I�;
ð11Þ

where [I] – the identity matrix, the sensitivity func-
tions of natural frequencies and shapes to parameter
variations can be expressed as

ofyig ¼ ½Ai��1½Bi�ofbg; offig ¼ ½Ci�ofbg; ð12Þ
ers of the transducer.
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where
½Ai� ¼ ½K� � fi½M� � 2½M�fyigfyig
T½K�;

½Bi� ¼
o½K�
ofbg � fi

o½M�
ofbg � 2½M�fyigfyig

T o½x�
ofbg ;

½Ci� ¼ fyig
T o½K�

ofbg � fi
o½M�
ofbg

� 	
fyig:

The sensitivity functions obtained can be further
employed to the shape optimisation of the tuning
fork in order to satisfy the necessary ratio between
the working resonant frequencies and to ensure the
necessary modal shapes. They enable to find the
most effective structural shape modifications ensur-
ing the desired change of modal properties.

The analysis of the sensitivity coefficients
obtained indicates that the stiffness of the support-
ing Ox bar (see Fig. 6) described by its length l

and width b has the main influence upon the values
of the 3rd and 4th modal frequencies. The plot of
the values of the two frequencies against the value
of parameter l (half length of the supporting bar)
is presented in Fig. 7.

At l � 1.54 mm natural frequencies of the 3rd
and 4th modes are equal. This circumstance requires
a special attention during the dynamic analysis as
here the magnitudes of the two modal frequencies
may interchange as a result of a small variation of l.
Fig. 7. Modal frequencies of the 3rd and 4th modes vs. l
6. Reduction of the dynamic equations

The modes presented in Section 2 describe the
dynamic properties of the transducer in the non-
rotating reference frame. If the rotation of the frame
takes place, the modes of vibration change depend-
ing upon the angular rate of rotation. They are
expressed in complex numbers, and the physical
interpretation of them becomes quite complicated.
As Eq. (7) is linear, steady harmonic vibration laws
of the transducer at a prescribed harmonic excita-
tion and angular rate of the rotation of the reference
frame can be easily found in terms of amplitudes of
vibration. However, in case of moderate angular
velocities of rotation of the frame the modal cou-
pling and resonance phenomena of the transducer
in the rotating reference frame can be much better
understood by expressing the equations in modal
coordinates of the non-damped and non-rotating
structure, the vibration modes of which have a sim-
ple engineering interpretation. Moreover, the aim of
having the modal properties of a non-rotating struc-
ture as target functions in geometrical design of the
transducer can be regarded as more natural and
convenient.

Let x1, x2, . . . ,xn be the modal frequencies and
matrix [Y] contain in its columns the modal shapes
of vibration of the non-rotating transducer. By
neglecting the effects caused by angular acceleration
and centripetal forces, the steady vibration of the
ength l of the Ox supporting bar of the transducer.



S. Kausinis, R. Barauskas / Measurement 39 (2006) 947–958 955
transducer in the rotating reference frame is gov-
erned by the equation expressed in terms of modal
displacements {z} as

f€zg þ ½diagðlÞ�f _zg þ ½diagðx2Þ�fzg

¼ �2X½Y�T½G�½Y�fzg þ ½Y�TfFg; ð13Þ

where modal displacements {z} are related to nodal
displacements of the structure as {U} = [Y]{z}, the
modal damping coefficients l1, l2, . . . ,ln are ob-
tained as li ¼ aþ bx2

i , and the properties of modal
shapes as [Y]T[M][Y] = [I], [Y]T[K][Y] = [diag(x2)]
have been employed. It should be noticed that mod-
al Eqs. (13) are coupled, as matrix [Y]T[G][Y] is non-
diagonal.

Eq. (13) can be simplified by neglecting the
dynamic contributions of higher modes of the trans-
ducer, [10]. We partition the modes and modal dis-
placements into two sets so that the displacement
vector can be presented as {U} = [Y1]{z1} + [Y2]{z2},
and truncate the terms corresponding to inertial and
damping forces of the second modal set. Finally the
following equation in terms of modal displacements
of only first set is obtained:

f€z1g þ ð½diagðl1Þ� þ 2X½Y1�T½G�½Y1�Þf _z1g
þ ½diagðx2

1Þ�fz1g
¼ �2X½Y1�T½G�½Sk�f _Fg þ ½Y1�TfFg; ð14Þ

where ½Sk� ¼ ½K��1 � ½Y1�½diagð1=x2
1Þ�½Y1�T is the

quasistatic compliance matrix of higher modes.
Fig. 8. Amplitude–frequency characteristic of the response of the vibrati
points A and B of the transducer in Ox and Oy directions.
Modal frequencies and shapes of the non-rotat-
ing transducer are obtained by using the finite ele-
ment software system ANSYS as described in
Section 4 and exported to the FORTRAN program
developed by us in order to calculate the dynamic
response of the transducer situated in the reference
frame rotating at angular rate X. Calculations were
performed in modal coordinates of the non-rotating
transducer by taking into account the coupling
terms between the modes caused by the gyroscopic
matrix [G]. All computations have been performed
on Pentium IV 1.7 MHz personal computer.

The accuracy of the solution depends upon the
number of modes taken into consideration. We
may always obtain the exact solution when solving
equations with all modes participating with their
dynamic contributions. However, if the solution
close to the exact can be obtained when taking into
account the dynamic contributions of only few
modes, such modes are of primary importance for
ensuring the operation law of the angular rate sensor.

Fig. 8 presents the amplitude frequency charac-
teristics (AFCH) of the characteristic points (A)
and (B) (Fig. 6) on the input (driving) and output
(pickup) tines of the tuning fork by taking first 4
modes, first 9 modes and the full dynamic model.

The amplitudes are presented in the dimension-
less form

U ¼ UcE
11

e31Ed
;

ng structure; UAx;U By – the dimensionless vibration amplitudes of
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where cE
11 – Young’s modulus, e31 – piezoelectric

coefficient, E – electric field strength, d – geometric
parameter of the transducer shown in Fig. 6. As ref-
erence displacement here we consider the static elon-

gation e31Ed
cE

11

of the bar connecting the tines of the

fork affected by the electric voltage equal to the
amplitude of the harmonic excitation of the
fork. Two peaks on the AFCH of amplitude UBy

correspond to two neighbouring 8th and 9th
modes. AFCH of UAx contains no peaks as the
modal frequencies of in-plane modes (the dominant
vibrations of them are directed along Ox) are situ-
ated far from the frequency range presented in
Fig. 8.

The detailed analysis of the influence of modes by
adding them one by one to the dynamic model leads
to the conclusion that the 9 · 9 reduced dynamic
model obtained by taking into account the dynamic
contributions of only first 9 modes is accurate
enough and can be used instead of the full 1326 ·
1326 original model. It should be noticed that 8th
and 9th dynamic modal contributions though
Fig. 9. Effects of separation of modal frequencies f3 and f4 on the f
characteristics; (b,d) amplitude–phase characteristics.
excited far below the resonance are important for
proper representation of the dynamic features of
the system.

The comparison of the results obtained by using
the reduced and full models demonstrates their
good agreement. The reduced model runs 50–100
times faster and saves the computation time consid-
erably when obtaining the amplitude- and phase-
frequency characteristics that require multiple
calculations of the forced harmonic response.
7. Analysis of the dynamic behaviour

In order to perform its function as the sensitive
element of the angular rate meter, the tuning fork-
shaped quartz transducer is excited by means of
the applied electric voltage over one half of the
fork (input tines). The frequency of excitation of
the fork is close to the natural frequencies of reso-
nant out-of-plane modes three and four, though
the modes are not excited because of the in-plane
action of the electromechanical excitation forces.
requency response of the transducer. (a,c) Amplitude–frequency
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For in-plane vibration, the excitation frequency is
far below the resonance, so they may be regarded
as non-resonant.

While the frame is rotating, in-plane vibration of
input tines is governed by the two neighbouring
modes 3 and 4. The vibration law of output tines
depends upon the mutual position of values of nat-
ural frequencies f3 and f4 on the frequency axis.

If f3 = f4, the out-of-plane vibration of output
tines will not be excited because the contributions
of modes 3 and 4 of eliminate each other. However,
the resonant out-of-plane vibration will be excited
in the input tines. This mode of operation is based
on a very narrow allowable frequency range in order
to keep the output vibrations essentially on the peak
of AFCH curve. Similar dynamic properties can be
obtained in case when the transducer is excited over
its entire surface. In a rotating frame, the in-plane
vibration would excite only the mode 3 of out-of-
plane vibration.

The optimum separation of modal frequencies f3

and f4 by selecting proper geometrical parameters
allows obtaining the out-of-plane vibration of out-
put tines, the AFCH of which has a plateau or a
local minimum on its top. Thus the tolerance of
the excitation frequency is allowable in a wider
range, Fig. 9a,b, where UA;U B and /A, /B denote
the amplitudes and phases of input and output tines’
vibration.

If f3 is very close but not equal to f4, and f3 < f4,
the out-of-plane vibration of output tines will be
excited by the rotation of the frame. The phase of
vibration of output tines will depend upon the
mutual positions of natural frequencies of symmet-
rical (f3) and anti-symmetrical (f4) out-of-plane
modes on the frequency axis. If the natural fre-
quency of symmetrical mode f3 because of some
constructional factors becomes greater than the nat-
ural frequency f4 of the anti-symmetrical mode, the
phase angle of the vibration of the output tines
changes through value p, Fig. 9c,d. This leads to
the same effect as the change of the sign of the angu-
lar rate of the frame rotation and may cause misin-
terpretations of the direction of rotation.

By ensuring an appropriate separation between
modal frequencies of the out-of-plane vibration of
the transducer, the peaks of the AFCH may be
made wider and less sharp in order to decrease the
possibility of misinterpretation of the measured
angular rate direction that is identified on the
base of the phase angle of vibration of the output
tines.
8. Conclusions

Structural vibration problems present certain
design limitations necessary for ensuring a correct
interpretation of the properties of the system.

A computation model and software tools have
been developed for the analysis of the dynamic
behaviour of the balanced H-shape oscillator of
the piezoelectric angular rate sensor by using the
finite element method and by including the gyro-
scopic effects caused by the rotation of the reference
frame. The model is capable of predicting the sys-
tem’s behaviour and characterizing comprehen-
sively the system by taking into account both
static and dynamic disturbances and parameter
deviations.

It has been demonstrated that the dynamic anal-
ysis of the angular rate sensor by employing the
3D FE model facilitates considerably the under-
standing the peculiarities of the operation of the
sensor and allows the quantitative evaluation of
the input–output relationship. The main opera-
tional modes of the angular rate sensor have been
analyzed and optimum separation of the modal
frequency values have been found ensuring a cor-
rect interpretation of the direction of the measured
angular rate.

The modelling approach presented can be also
employed during the education of advanced level
specialists in the field of measurement and instru-
mentation in the design-oriented framework.
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